// // Programmer: Craig Stuart Sapp <craig@ccrma.stanford.edu> // Creation Date: Fri May 12 09:00:58 PDT 2006 // Last Modified: Wed Jun 21 08:30:52 PDT 2006 (subclassed to MazurkaPlugin) // Filename: MzSpectrogramHost.cpp // URL: http://sv.mazurka.org.uk/src/MzSpectrogramHost.cpp // Documentation: http://sv.mazurka.org.uk/MzSpectrogramHost // Syntax: ANSI99 C++; vamp 0.9 plugin // // Description: Demonstration of how to process spectral data supplied // by the host application. // #include "MzSpectrogramHost.h" #include <math.h> /////////////////////////////////////////////////////////////////////////// // // Vamp Interface Functions // /////////////////////////////// // // MzSpectrogramHost::MzSpectrogramHost -- class constructor. // MzSpectrogramHost::MzSpectrogramHost(float samplerate) : MazurkaPlugin(samplerate) { mz_minbin = 0; mz_maxbin = 0; } /////////////////////////////// // // MzSpectrogramHost::~MzSpectrogramHost -- class destructor. // MzSpectrogramHost::~MzSpectrogramHost() { // do nothing } //////////////////////////////////////////////////////////// // // required polymorphic functions inherited from PluginBase: // std::string MzSpectrogramHost::getName(void) const { return "mzspectrogramhost"; } std::string MzSpectrogramHost::getMaker(void) const { return "The Mazurka Project"; } std::string MzSpectrogramHost::getCopyright(void) const { return "2006 Craig Stuart Sapp"; } std::string MzSpectrogramHost::getDescription(void) const { return "Host Spectrogram"; } int MzSpectrogramHost::getPluginVersion(void) const { #define P_VER "200606260" #define P_NAME "MzSpectrogramHost" const char *v = "@@VampPluginID@" P_NAME "@" P_VER "@" __DATE__ "@@"; if (v[0] != '@') { std::cerr << v << std::endl; return 0; } return atol(P_VER); } //////////////////////////////////////////////////////////// // // optional polymorphic parameter functions inherited from PluginBase: // // Note that the getParameter() and setParameter() polymorphic functions // are handled in the MazurkaPlugin class. // ////////////////////////////// // // MzSpectrogramHost::getParameterDescriptors -- return a list of // the parameters which can control the plugin. // MzSpectrogramHost::ParameterList MzSpectrogramHost::getParameterDescriptors(void) const { ParameterList pdlist; ParameterDescriptor pd; // first parameter: The minimum spectral bin to display pd.name = "minbin"; pd.description = "Minimum\nfrequency\nbin"; pd.unit = ""; pd.minValue = 0.0; pd.maxValue = 50000.0; pd.defaultValue = 0.0; pd.isQuantized = 1; pd.quantizeStep = 1.0; pdlist.push_back(pd); // second parameter: The maximum spectral bin to display pd.name = "maxbin"; pd.description = "Maximum\nfrequency\nbin"; pd.unit = ""; pd.minValue = -1.0; pd.maxValue = 50000.0; pd.defaultValue = -1.0; pd.isQuantized = 1; pd.quantizeStep = 1.0; pdlist.push_back(pd); return pdlist; } //////////////////////////////////////////////////////////// // // required polymorphic functions inherited from Plugin: // ////////////////////////////// // // MzSpectrogramHost::getInputDomain -- the host application needs // to know if it should send either: // // TimeDomain == Time samples from the audio waveform. // FrequencyDomain == Spectral frequency frames which will arrive // in an array of interleaved real, imaginary // values for the complex spectrum (both positive // and negative frequencies). Zero Hz being the // first frequency sample and negative frequencies // at the far end of the array as is usually done. // Note that frequency data is transmitted from // the host application as floats. The data will // be transmitted via the process() function which // is defined further below. // MzSpectrogramHost::InputDomain MzSpectrogramHost::getInputDomain(void) const { return FrequencyDomain; } ////////////////////////////// // // MzSpectrogramHost::getOutputDescriptors -- return a list describing // each of the available outputs for the object. OutputList // is defined in the file vamp-sdk/Plugin.h: // // .name == short name of output for computer use. Must not // contain spaces or punctuation. // .description == long name of output for human use. // .unit == the units or basic meaning of the data in the // specified output. // .hasFixedBinCount == true if each output feature (sample) has the // same dimension. // .binCount == when hasFixedBinCount is true, then this is the // number of values in each output feature. // binCount=0 if timestamps are the only features, // and they have no labels. // .binNames == optional description of each bin in a feature. // .hasKnownExtent == true if there is a fixed minimum and maximum // value for the range of the output. // .minValue == range minimum if hasKnownExtent is true. // .maxValue == range maximum if hasKnownExtent is true. // .isQuantized == true if the data values are quantized. Ignored // if binCount is set to zero. // .quantizeStep == if isQuantized, then the size of the quantization, // such as 1.0 for integers. // .sampleType == Enumeration with three possibilities: // OD::OneSamplePerStep -- output feature will be aligned with // the beginning time of the input block data. // OD::FixedSampleRate -- results are evenly spaced according to // .sampleRate (see below). // OD::VariableSampleRate -- output features have individual timestamps. // .sampleRate == samples per second spacing of output features when // sampleType is set toFixedSampleRate. // Ignored if sampleType is set to OneSamplePerStep // since the start time of the input block will be used. // Usually set the sampleRate to 0.0 if VariableSampleRate // is used; otherwise, see vamp-sdk/Plugin.h for what // positive sampleRates would mean. // MzSpectrogramHost::OutputList MzSpectrogramHost::getOutputDescriptors(void) const { OutputList list; OutputDescriptor od; // First and only output channel: od.name = "magnitude"; od.description = "Magnitude Spectrum"; od.unit = "decibels"; od.hasFixedBinCount = true; od.binCount = mz_maxbin - mz_minbin + 1; od.hasKnownExtents = false; // od.minValue = 0.0; // od.maxValue = 0.0; od.isQuantized = false; // od.quantizeStep = 1.0; od.sampleType = OutputDescriptor::OneSamplePerStep; // od.sampleRate = 0.0; list.push_back(od); return list; } ////////////////////////////// // // MzSpectrogramHost::initialise -- this function is called once // before the first call to process(). // bool MzSpectrogramHost::initialise(size_t channels, size_t stepsize, size_t blocksize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) { return false; } // step size and block size should never be zero if (stepsize <= 0 || blocksize <= 0) { return false; } setBlockSize(blocksize); setStepSize(stepsize); setChannelCount(channels); mz_minbin = getParameterInt("minbin"); mz_maxbin = getParameterInt("maxbin"); if (mz_minbin >= getBlockSize()/4) { mz_minbin = getBlockSize()/4-1; } if (mz_maxbin >= getBlockSize()/4) { mz_maxbin = getBlockSize()/4-1; } if (mz_maxbin < 0) { mz_maxbin = getBlockSize()/4-1; } if (mz_maxbin > mz_minbin) { std::swap(mz_minbin, mz_maxbin); } return true; } ////////////////////////////// // // MzSpectrogramHost::process -- This function is called sequentially on the // input data, block by block. After the sequence of blocks has been // processed with process(), the function getRemainingFeatures() will // be called. // // Here is a reference chart for the Feature struct: // // .hasTimestamp == If the OutputDescriptor.sampleType is set to // VariableSampleRate, then this should be "true". // .timestamp == The time at which the feature occurs in the time stream. // .values == The float values for the feature. Should match // OD::binCount. // .label == Text associated with the feature (for time instants). // #define ZEROLOG -120.0 MzSpectrogramHost::FeatureSet MzSpectrogramHost::process(float **inputbufs, Vamp::RealTime timestamp) { if (getChannelCount() <= 0) { std::cerr << "ERROR: MzSpectrogramHost::process: " << "MzSpectrogramHost has not been initialized" << std::endl; return FeatureSet(); } FeatureSet returnFeatures; Feature feature; feature.hasTimestamp = false; // constant sampling rate, so don't need. float real; // real part of frequency spectrum float imag; // imaginary part of frequency spectrum float magnitude; // temporary holding space for magnitude value for (int i=mz_minbin; i<=mz_maxbin; i++) { real = inputbufs[0][2*i]; imag = inputbufs[0][2*i + 1]; magnitude = real * real + imag * imag; // convert to decibels: if (magnitude <= 0) { magnitude = ZEROLOG; } else { magnitude = 10.0 * log10(magnitude); } feature.values.push_back(magnitude); } // Append new frame of data onto the output channel // specified in the function getOutputDescriptors(): returnFeatures[0].push_back(feature); return returnFeatures; } ////////////////////////////// // // MzSpectrogramHost::getRemainingFeatures -- This function is called // after the last call to process() on the input data stream has // been completed. Features which are non-causal can be calculated // at this point. See the comment above the process() function // for the format of output Features. // MzSpectrogramHost::FeatureSet MzSpectrogramHost::getRemainingFeatures(void) { // no remaining features, so return a dummy feature return FeatureSet(); } ////////////////////////////// // // MzSpectrogramHost::reset -- This function may be called after data processing // has been started with the process() function. It will be called when // processing has been interrupted for some reason and the processing // sequence needs to be restarted (and current analysis output thrown out). // After this function is called, process() will start at the beginning // of the input selection as if initialise() had just been called. // Note, however, that initialise() will NOT be called before processing // is restarted after a reset(). // void MzSpectrogramHost::reset(void) { // no actions necessary to reset this plugin } /////////////////////////////////////////////////////////////////////////// // // Non-Interface Functions // // no non-interface functions |