Computational Performance Analysis

Craig Stuart Sapp CHARM

25 April 2007 CCRMA Colloquium

Mazurka Project

- 2,076 recordings of 49 mazurkas = 42 performances/mazurka on average least: 30 performances of 41/1 most: 60 performances of 63/3
- 99 performers on 150 CDs, 93 hours of music • Earliest is 1907 Pachmann performance of 50/2

Performers of mazurka 63/3:

Afanassiev (2001)	Friedman (1930)	Pachmann (1927)
Anderszewski (2003)	Gierżod (1998)	Paderewski (1930)
Ashkenazy (1981)	Gornostaeva (1994)	Perlemuter (1992)
Biret (1990)	Harasiewicz (1955)	Pobłocka (1999)
Blet (2003)	Hatto (1988)	Rabcewiczowa (1932)
Block (1995)	Horowitz (1949)	Rachmaninoff (1923)
Blumental (1952)	Indjic (1988)	Rangell (2001)
Boshniakovich (1969)	Kapell (1951)	Rosen (1989)
Brailowsky (1960)	Kissin (1993)	Rosenthal (1931)
Bunin (1987)	Kushner (1989)	Rubinstein (1939)
Chiu (1999)	Luisada (1991)	Rubinstein (1952)
Cohen (1997)	Lushtak (2004)	Rubinstein (1966)
Cortot (1951)	Magaloff (1978)	Schilhawsky (1960)
Czerny-Stefańska (1949)	Magin (1975)	Shebanova (2002)
Ezaki (2006)	Michałowski (1933)	Smith (1975)
Falvay (1989)	Milkina (1970)	Ts'ong (1984)
Ferenczy (1958)	Mohovich (1999)	Uninsky (1932)
Flière (1977)	Moravec (1969)	Uninsky (1971)
François (1956)	Neighaus (1950)	Wasowski (1980)
Friedman (1923)	Osinska (1989)	Zak (1937)

see mazurka.org.uk/info/discography

1. Data Extraction:

- Beat durations/tempo
- Beat loudnesses

Reverse conducting

Manual correction of taps

Using audio annotation plugins for Sonic Visualiser

http://www.sonicvisualiser.org http://sv.mazurka.org.uk

mazurka in A minor, Op. 17, No. 4, m. 18

All note events

100+ ms = clearly audible

mazurka in A minor, Op. 17, No. 4, m. 18

Extracting dynamics

Beat-tempo graphs

Beat-dynamics graphs

2. Analysis Concepts:

- Scape plots
- Correlation

Scape plotting domain

- 1-D data sequences chopped up to form a 2-D plot
- Example of a composition with 6 beats at tempos A, B, C, D, E, and F:

Scape plotting domain (2)

1-D data sequences chopped up to form a 2-D plot
Example of a composition with 6 beats at tempos A, B, C, D, E, and F:

background

large-scale structures

middleground

small-scale structures

foreground surface features

Land*scape*:

An Orchard c1896 Henri Rousseau

Scape plotting domain (3)

1-D data sequences chopped up to form a 2-D plot
Example of a composition with 6 beats at tempos A, B, C, D, E, and F:

background

large-scale structures

middleground

small-scale structures

foreground surface features

Land*scape*:

An Orchard c1896 Henri Rousseau

Example using averaging in each cell:

average of last 5 numbers

Correlation

Performance tempo correlations

	Bi	Br	Ch	FI	In	Lu	R8	R6	Sm	Un
Biret	1.	0.92	0.81	0.83	0.95	0.85	0.62	0.5	0.55	0.86
Brailowsky	0.92	1.	0.81	0.86	0.91	0.84	0.66	0.55	0.65	0.85
Chiu	0.81	0.81	1.	0.86	0.86	0.81	0.76	0.74	0.67	0.89
Friere	0.83	0.86	0.86	1.	0.88	0.84	0.73	0.7	0.74	0.89
Indjic	0.95	0.91	0.86	0.88	1.	0.88	0.66	0.59	0.63	0.9
Luisada	0.85	0.84	0.81	0.84	0.88	1.	0.67	0.61	0.56	0.89
Rubinstein 1938	0.62	0.66	0.76	0.73	0.66	0.67	1.	0.77	0.62	0.75
Rubinstein 1966	0.5	0.55	0.74	0.7	0.59	0.61	0.77	1.	0.59	0.69
Smith	0.55	0.65	0.67	0.74	0.63	0.56	0.62	0.59	1.	0.64
Uninsky	0.86	0.85	0.89	0.89	0.9	0.89	0.75	0.69	0.64	1.

Highest correlation to Biret

Lowest correlation to Biret

3. Analysis Techniques

- Performance maps
- Correlation scapes
- Performance scapes

Correlation Maps – nearest neighbor

• Draw one line connecting each performance to its closest correlation match • Correlating to the entire performance length.

Mazurka 63/3

Correlation Maps – adding the average

• synthetic average generated by averaging duration of each beat in each performance

Arch correlation scapes

Binary correlation scapes

Binary correlation scapes (2)

Rangell / Kushner

Rangell / Cohen

http://mazurka.org.uk/info/excel/beat

http://mazurka.org.uk/software/online/scape

Search for best correlations

at each point in all plots

others – assign unique color to each comparison.

3. look down from above at highest peaks

Perormance correlation scapes

• Who is most similar to a particular performer at any given region in the music?

mazurka.org.uk/ana/pcor-gbdyn

Nearest neighbors in detail

Yaroshinsky 2005 Mazurka in B minor, 30/2 correlation maps only use tip of triangle:

Component performances:

29.1% Average
24.2% Biret 1990
9.5% Uninsky 1971
8.4% Jonas 1947
6.8% Smith 1975
3.7% Poblocka 1999
3.1% Lushtak 2004
3.1% Fiorentino 1962
2.0% Francois 1956
1.6% Cortot 1951
1.5% Clidat 1994

Causes:

- direction relation (e.g., teacher)
- indirect relation (e.g., school)
- random chance

Boring timescape pictures

over-exposed photographs -- throw them in the waste bin.

The same performance by Magaloff on two different CD re-releases:

• Structures at bottoms due to errors in beat extraction, measuring limits in beat extraction, and correlation graininess.

Boring timescape pictures?

Two difference performances from two different performers on two different record labels from two different countries.

see www.charm.rhul.ac.uk/content/contact/hatto_article.html

(Mazurka in C-sharp minor, Op. 63, No. 3)

Same performer over time

Same work; same pianist; different performances

mazurka in A minor 17/4

see mazurka.org.uk/ana/pcor/mazurka17-4-noavg

Same performer over time

Same work; same pianist; different performances

mazurka in A minor 17/4

Dynascapes: Hatto & Indjic

Н	Ι
56.7	61.3
64.5	64.1
66.0	71.3
60.1	62.3
63.8	69.2
64.0	64.3
61.1	61.0
60.7	61.4
62.9	64.8
61.4	61.4
64.5	67.2
66.9	70.7
63.0	66.1
61.1	62.5
66.0	66.7
65.0	64.5
64.8	65.2
66.3	68.6
62.1	66.1
63.4	66.9
64.1	64.1
61.8	61.0
61.3	64.1
62.1	67.2

Dynascapes: Friedman

Friedman 1923

76.4% Friedman 1930
5.6% Uninsky 1932
2.1% Wasowski 1980
1.9% Fliere 1977
1.8% Rachmaninoff 1923
1.8% Chiu 1999
1.6% Rosen 1989
1.6% Rosenthal 1931

Friedman 1930 67.6% Friedman 1923 7.9% Magaloff 1978 3.8% Gornostaeva 1994 2.8% Paderewski 1930 2.8% Uninsky 1932 2.4% Ashkenazy 1981 2.3% Wasowski 1980 1.6% Fliere 1977 1.0% Rachmaninoff 1923 1.0% Bunin 1987

Dynascapes: Rubinstein

Alexander Uninsky (1910-1972)

Uninsky 1932 74.1% Uninsky 1971 4.9% Moravec 1969 2.8% Gierzod 1998 2.8% Harasiewicz 1955 1.7% Schilhawsky 1960 1.2% Czerny 1949 1.1% Rabcewiczowa 1932 Uninsky 1971 66.1% Uninsky 1932 6.0% Indjic 1988 5.2% Boshniakovich 1969 2.6% Czerny 1949 2.6% Gierzod 1998 2.1% Schilhawsky 1960 1.9% Milkina 1970 1.7% Harasiewicz 1955 dynascapes

Uninsky 1932 65.5% Uninsky 1971 7.0% Shebanova 2002 4.7% Rachmaninoff 1923 3.8% Friedman 1930 1.8% Ashkenazy 1981 1.7% Luisada 1991 1.3% Horowitz 1949 Uninsky 1971 49.3% Uninsky 1932 10.8% Kapell 1951 7.3% Bunin 1987 6.6% Harasiewicz 1955 3.5% Poblocka 1999 2.1% Gornostaeva 1994 1.7% Smith 1975 1.2% Lushtak 2004

Scapes of Tempo and dynamics:

Uninsky 1932 78.9% Uninsky 1971

5.2% Moravec 1969
3.2% Schilhawsky 1960
1.3% Rabcewiczowa 1932
1.3% Rubinstein 1939
1.2% Smith 1975

Uninsky 1971 78.1% Uninsky 1932 4.6% Milkina 1970 4.4% Schilhawsky 1960 1.4% Wasowski 1980 1.2% Smith 1975 1.2% Mohovich 1999

Dynamics + Tempo scapes

dynascape:

dymescape(?):

Dynamics + Tempo

Tempo & Dynamics:

Cortot 1951 56.2% Czemy 1949 12.0% Lushtak 2004 8.4% Kapell 1951 5.1% Hatto 1988 2.8% Luisada 1991 1.5% Kissin 1993 1.4% Brailowsky 1960 1.4% Harasiewicz 1955 1.4% Blumental 1952 1.2% Bunin 1987 1.2% Ashkenazy 1981

59.1% Harasiewicz 1955 10.7% Afanassiev 2001 5.0% Gierzod 1998 4.1% Kissin 1993 4.0% Cortot 1951 2.9% Kapell 1951 2.2% Kushner 1989 1.8% Lushtak 2004 1.5% Ashkenazy 1981 1.3% Bunin 1987

Halina Czerny-Stefanska studied the piano under her father Stanislaw Czerny, Jozef Turczynski, Zbigniew Drzewiecki and Alfred Cortot in Paris.

Tempo & Dyanmics: Rangell (1)

Tempo only

45.5% Milkina 1970 10.3% Osinska 1989 10.0% Shebanova 2002 5.8% Mohovich 1999 4.0% Neighaus 1950 3.9% Poblocka 1999 3.4% Wasowski 1980 1.9% Magaloff 1978 1.6% Rubinstein 1952 1.5% Uninsky 1971 1.4% Tsong 1984 1.4% Paderewski 1930 1.2% Rabcewiczowa 1932 1.2% Rubinstein 1939 1.2% Rubinstein 1966 1.1% Uninsky 1932 1.0% Moravec 1969

Dynamics only

Peeling layers of the Onion

Scape Rank

Indjic 1988:

	0.	Indjic 1988:	100.0%	* 59/59	= 1.00
	1.	Hatto 1997:	99.7%	* 58/59	= .979
	2.	Average:	73.2%	* 57/59	= .707
Ρ	3.	Gierzod 1998:	19.3%	* 56/59	= .183
R	4.	Fliere 1977:	26.6%	* 55/59	= .247
R	5.	Uninsky 1971:	21.9%	* 54/59	= .200
Ρ	6.	Friedman 1923:	13.8%	* 53/59	= .124
Ρ	7.	Osinska 1989:	13.9%	* 52/59	= .122
Ρ	8.	Czerny-Stefanska 1949	9: 13.4%	* 51/59	= .115
Ρ	9.	Shebanova 2002:	16.9%	* 50/59	= .142
Ρ	10	. Harasiewicz 1955:	12.6%	* 49/59	= .105
R	11	. Boshniakovich 1969:	14.6%	* 48/59	= .119
Α	12	. Schilhawsky 1960:	16.7%	* 47/59	= .132
R	13	Afanassiev 2001:	22.8%	* 46/59	= .178
R	14	. Neighaus 1950:	17.3%	* 45/59	= .132
Ρ	15	Friedman 1930:	20.0%	* 44/59	= .149
Ρ	16	. Poblocka 1999:	14.1%	* 43/59	= .103

In the future: scape-rank performance maps...

Observations

- Recordings have a strong influence on mazurka performance practice.
 - Internationalization

• Pianists maintain a stable performance tempo structure over long career.

- Rubinstein • Ts'ong • Horowitz
- Uninsky
 Friedman
- Cortot

- c.f. Bruno Repp
- Like Per Dahl's observations: pianists getting closer to the "average"
 - also slowing down over time.

• Like Daniel Barolsky's observations: dynamics more variable than timing.

Slides online:

http://mazurka.org.uk/info/present/charm-20070413

Extra Slides

Dynamics & Phrasing

Average tempo over time

• Performances of mazurkas slowing down over time:

Average Tempo v Performance Year by Composition

Slowing down at about 3 BPM/decade

Laurence Picken, 1967: "Centeral Asian tunes in the Gagaku tradition" in *Festschrift für Walter Wiora*. Kassel: Bärenreiter, 545-51.

Average Tempo over time (2)

• The slow-down in performance tempos is unrelated to the age of the performer

Tempo deviation from average vs Performer's age

Tempo graphs MMM MAMMAMMMM A 1 2 A and white the source and the source of the s

http://mazurka.org.uk/ana/tempograph

1 2 3

Mazurka Meter

- First beat short
- Second beat long

Mazurka in A minor Op. 17, No. 4

measure with longer second beat measure with longer first beat

blurred image to show overall structure

Maps and scapes

Correlation maps give gross detail, like a real map:

Correlation scapes give local details, like a photograph:

Comparison of performers

Rubinstein 1961

Smith 1975

Absolute Correlation Map

6 April 2007

Closeness to the average

Correlation tree

Beat-Event Timing Differences

The conspiracy goes deeper? or Not?

How time + dynamics are mixed

Correlation:

$$\sqrt{\frac{\sum_{i} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2 \sum_{i} (y_i - \overline{y})^2}}$$

 $t_n = (t1, t2, t3, t4, t5, t6, t7, t8, ..., tn)$ $d_n = (d1, d2, d3, d4, d5, d6, d7, ... dn)$ original tempo sequence original dynamic sequence

 $\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i-\overline{x})^2}$

J_n = (Jt1, Jd1, Jt2, Jd2, Jt3, Jd3, ..., Jtn, Jdn) *joint sequence*

original time sequence is unaltered:

original dynamic sequence is scaled to match tempo sequence's mean and standard deviation:

$$J_{t,n} = t_n$$

$$J_{d,n} = \sigma_t \left(\frac{d_n - \mu_d}{\sigma_d} \right) + \mu_t$$