Tomsic 1995

Performance0-Rank  0-Score1-Rank  1-Score2-Rank  2-Score3-Rank  3-Score3R-Rank  3R-Score4-Rank  4-Score  NED
Ashkenazy 1981   32  0.8844  0.0032  0.1128  0.1118  0.3635  0.20
Bacha 1997   10  0.9433  0.0012  0.1412  0.4817  0.5511  0.51
Barbosa 1983   31  0.8831  0.0029  0.1031  0.1012  0.4236  0.20
Biret 1990   6  0.9432  0.006  0.197  0.5110  0.606  0.55
Block 1995   42  0.8140  0.0043  0.0649  0.0610  0.5641  0.18
Brailowsky 1960   15  0.9248  0.0017  0.1219  0.397  0.5618  0.47
Chiu 1999   28  0.8825  0.0031  0.0838  0.086  0.5831  0.22
Clidat 1994   17  0.9215  0.0120  0.1118  0.394  0.5122  0.45
Cohen 1997   41  0.8320  0.0040  0.0839  0.0832  0.0951  0.08
Cortot 1951   18  0.9219  0.0024  0.1224  0.318  0.5923  0.43
Csalog 1996   4  0.944  0.035  0.234  0.547  0.539  0.53
Czerny 1990   25  0.9045  0.0023  0.1116  0.418  0.4324  0.42
Ezaki 2006   21  0.9113  0.0125  0.1723  0.333  0.6420  0.46
Ferenczy 1958   34  0.873  0.0410  0.1326  0.1815  0.3627  0.25
Fliere 1977   22  0.9121  0.0022  0.1120  0.394  0.775  0.55
Fou 1978   40  0.835  0.0239  0.0744  0.075  0.6932  0.22
Francois 1956   9  0.9423  0.009  0.145  0.525  0.604  0.56
Grinberg 1951   27  0.8838  0.0036  0.0935  0.0924  0.4137  0.19
Hatto 1993   8  0.9424  0.008  0.1511  0.4811  0.5215  0.50
Hatto 1997   7  0.9449  0.007  0.199  0.5011  0.5312  0.51
Indjic 2001   5  0.9422  0.004  0.176  0.529  0.558  0.53
Jonas 1947   2  0.962  0.052  0.422  0.692  0.722  0.70
Kapell 1951   13  0.9317  0.0115  0.1414  0.4515  0.4721  0.46
Kiepura 1999   39  0.8346  0.0041  0.0742  0.0710  0.4143  0.17
Kushner 1989   11  0.9411  0.0113  0.1613  0.4611  0.5513  0.50
Luisada 1991   29  0.8829  0.0033  0.0932  0.096  0.5430  0.22
Lushtak 2004   33  0.8727  0.0034  0.0936  0.094  0.5729  0.23
Magaloff 1978   44  0.7737  0.0044  0.0647  0.0622  0.2049  0.11
Meguri 1997   3  0.959  0.013  0.373  0.593  0.583  0.58
Milkina 1970   43  0.816  0.0142  0.1227  0.1214  0.4233  0.22
Mohovich 1999   26  0.8939  0.0027  0.0933  0.0917  0.3938  0.19
Niedzielski 1931   24  0.9152  0.0016  0.1115  0.4312  0.5516  0.49
Ohlsson 1999   36  0.8710  0.0130  0.1030  0.107  0.7026  0.26
Olejniczak 1990   19  0.9241  0.0018  0.1122  0.384  0.5819  0.47
Osinska 1989   37  0.857  0.0135  0.0934  0.097  0.6828  0.25
Rangell 2001   47  0.7016  0.0147  0.0745  0.0721  0.3048  0.14
Richter 1976   38  0.8442  0.0038  0.0937  0.0920  0.3344  0.17
Rubinstein 1938   46  0.7247  0.0045  0.0550  0.058  0.5146  0.16
Rubinstein 1952   45  0.7436  0.0046  0.0741  0.0716  0.4442  0.18
Rubinstein 1961   48  0.6826  0.0048  0.0648  0.0610  0.6339  0.19
Rubinstein 1966   49  0.6712  0.0149  0.0646  0.0612  0.6040  0.19
Shebanova 2002   23  0.9130  0.0021  0.1221  0.386  0.5717  0.47
Smidowicz 1948   12  0.9314  0.0111  0.138  0.5112  0.5310  0.52
Smidowicz 1948b   14  0.9335  0.0014  0.1610  0.4915  0.5214  0.50
Smith 1975   50  0.6518  0.0050  0.0743  0.0728  0.1450  0.10
Sofronitsky 1949   35  0.8743  0.0037  0.1029  0.1025  0.2645  0.16
Sztompka 1959   30  0.8834  0.0028  0.0840  0.089  0.5634  0.21
Tomsic 1995   target  targettarget  targettarget  targettarget  targettarget  targettarget  target
Uninsky 1971   20  0.9128  0.0026  0.1325  0.2413  0.4225  0.32
Wasowski 1980   16  0.928  0.0119  0.1117  0.403  0.697  0.53
Average Tempo   1  0.971  0.701  0.691  0.842  0.791  0.81
Random 1   51  0.0753  0.0051  0.0451  0.044  0.4647  0.14
Random 2   53  -0.0250  0.0053  0.0253  0.0230  0.0653  0.03
Random 3   52  0.0351  0.0052  0.0352  0.0333  0.0752  0.05

Note: To load data table give above into Excel, copy and paste the data into a text editor (such as WordPad) first, then copy the text in the editor and past into Excel. You should remove the "target" line from the data before pasting into Excel so that plotting graphs of the data is done properly.

Column descriptions

  • Performance:
  • 0-Rank/0-Score: 0-Score is equivalent to Pearson correlation of the entire data sequence between the reference performance and a test performance. 0-Rank is the sorting order of the 0-scores (highest score has a rank of 1).
  • 1-Rank/1-Score: 1-Score is the area fraction covered by a particular performance in the scape plot (see image above). These values should not be taken literally, since they are sensitive to the Hatto Effect.
  • 2-Rank/2-Score: 2-Score values are equivalent to 1-Score values with all higher-ranking performances removed before the calculation of the area of coverage in the scape is calculated. Improvment over the 1-Rank scores, but still somewhat sensitive to the Hatto Effect.
  • 3-Rank/3-Score: Similar to 2-Rank calculations. The bottom 1/2 of the 2-rank performances are kept constant as a noise floor for the similarity measurement. Then one-by-one the top 1/2 of the 2-rank performances are superimposed with the noise-floor performances, and a 3-score is measured as the area covered in the scape. This measure is not sentisive to the Hatto Effect.
  • 3R-Rank/3R-Score: Reverse 3-rank/3-scores. 3-rankings and scores are not symmetric (A->B values are different from B->A values). So this column represents similarity measures in the opposite direction.
  • 4-Rank/4-Score: The geometric mean between 3-scores and 3R-scores. This column gives the best overall similarity ranking between the various performances (see color codes below).
  • NED: Noise Equivalient Distance (not yet implemented)

Color codes for 3-rank listings:

  • red = strongly similar performance to target
  • orange = moderately similar performance
  • yellow = weakly similar performance
  • green = marginally similar/dissimilar performance
  • white = dissimilar to target
  • blue = false positive (has high 3-rank score but low 3R-rank score)

3-rank/scores are not symmetric, so the 3R-rank/score columns give the 3-rank/scores going in the opposite direction. More matches in the 3-rank column than in the 3R-rank column indicates an individualistic performance, while more matches in the 3R-rank column indicates a mainstream performance.

If a 3-rank and a 3R-rank are both marked as similar to each other, then there is a possible direct relation between the performances. If one is similar to the other but not in the reverse direction, then the similarity is more likely to be by chance (performers randomly chose a similar interpretation).