Barbosa 1983

Performance0-Rank  0-Score1-Rank  1-Score2-Rank  2-Score3-Rank  3-Score3R-Rank  3R-Score4-Rank  4-Score  NED
Ashkenazy 1981   8  0.8910  0.019  0.197  0.585  0.724  0.65
Bacha 1997   30  0.8329  0.0033  0.0836  0.0831  0.1338  0.10
Barbosa 1983   target  targettarget  targettarget  targettarget  targettarget  targettarget  target
Biret 1990   35  0.8324  0.0035  0.0549  0.0531  0.1443  0.08
Block 1995   45  0.7534  0.0046  0.0642  0.0632  0.0750  0.06
Brailowsky 1960   3  0.912  0.164  0.206  0.622  0.693  0.65
Chiu 1999   34  0.8325  0.0032  0.0740  0.0722  0.2135  0.12
Clidat 1994   7  0.909  0.015  0.238  0.5711  0.408  0.48
Cohen 1997   39  0.8115  0.0037  0.0738  0.0719  0.2333  0.13
Cortot 1951   42  0.8053  0.0042  0.0646  0.0633  0.0948  0.07
Csalog 1996   24  0.8626  0.0025  0.1221  0.2444  0.0734  0.13
Czerny 1990   6  0.907  0.027  0.294  0.679  0.406  0.52
Ezaki 2006   5  0.913  0.043  0.393  0.714  0.632  0.67
Ferenczy 1958   25  0.8633  0.0030  0.1228  0.1223  0.1831  0.15
Fliere 1977   9  0.8822  0.008  0.189  0.5217  0.487  0.50
Fou 1978   33  0.8314  0.0023  0.0924  0.198  0.6014  0.34
Francois 1956   23  0.8623  0.0024  0.0925  0.1925  0.2819  0.23
Grinberg 1951   37  0.8212  0.0138  0.0644  0.0637  0.0947  0.07
Hatto 1993   19  0.8641  0.0028  0.1129  0.1131  0.1137  0.11
Hatto 1997   22  0.8647  0.0027  0.1130  0.1133  0.1236  0.11
Indjic 2001   21  0.8642  0.0026  0.1123  0.2235  0.1129  0.16
Jonas 1947   11  0.8817  0.0010  0.1110  0.4839  0.0920  0.21
Kapell 1951   12  0.8745  0.0020  0.1211  0.4236  0.0826  0.18
Kiepura 1999   20  0.8620  0.0031  0.1327  0.131  0.7515  0.31
Kushner 1989   41  0.8050  0.0041  0.0837  0.0835  0.0942  0.08
Luisada 1991   36  0.8243  0.0039  0.0833  0.0845  0.0746  0.07
Lushtak 2004   43  0.7844  0.0045  0.0647  0.0646  0.0551  0.05
Magaloff 1978   32  0.8311  0.0122  0.1026  0.192  0.7012  0.36
Meguri 1997   15  0.8638  0.0015  0.1114  0.4035  0.0925  0.19
Milkina 1970   40  0.8032  0.0040  0.0832  0.0821  0.3130  0.16
Mohovich 1999   27  0.858  0.0112  0.1019  0.3026  0.1818  0.23
Niedzielski 1931   29  0.8518  0.0014  0.0818  0.3421  0.3413  0.34
Ohlsson 1999   38  0.8219  0.0036  0.0739  0.0728  0.1140  0.09
Olejniczak 1990   4  0.915  0.026  0.225  0.652  0.635  0.64
Osinska 1989   26  0.8516  0.0013  0.1022  0.2410  0.5511  0.36
Rangell 2001   48  0.6930  0.0048  0.0835  0.0833  0.1039  0.09
Richter 1976   28  0.8531  0.0019  0.1117  0.3513  0.4910  0.41
Rubinstein 1938   47  0.7135  0.0047  0.0834  0.0816  0.3728  0.17
Rubinstein 1952   44  0.7848  0.0043  0.0643  0.0610  0.5327  0.18
Rubinstein 1961   49  0.6249  0.0050  0.0741  0.0731  0.1241  0.09
Rubinstein 1966   50  0.6136  0.0049  0.0550  0.0530  0.1345  0.08
Shebanova 2002   1  0.931  0.581  0.561  0.803  0.661  0.73
Smidowicz 1948   14  0.876  0.0218  0.1913  0.4129  0.1121  0.21
Smidowicz 1948b   13  0.8737  0.0017  0.1115  0.3926  0.1617  0.25
Smith 1975   46  0.7421  0.0044  0.0645  0.065  0.6024  0.19
Sofronitsky 1949   16  0.8613  0.0021  0.1120  0.2627  0.1622  0.20
Sztompka 1959   17  0.8627  0.0016  0.1116  0.3912  0.539  0.45
Tomsic 1995   10  0.8839  0.0011  0.1412  0.4231  0.1023  0.20
Uninsky 1971   18  0.8640  0.0029  0.1131  0.1139  0.0644  0.08
Wasowski 1980   31  0.8351  0.0034  0.0548  0.0536  0.0849  0.06
Average Tempo   2  0.924  0.042  0.442  0.7731  0.1016  0.28
Random 1   52  -0.0246  0.0052  0.0252  0.0239  0.0453  0.03
Random 2   53  -0.0752  0.0053  0.0253  0.0229  0.0652  0.03
Random 3   51  0.0428  0.0051  0.0451  0.049  0.4632  0.14

Note: To load data table give above into Excel, copy and paste the data into a text editor (such as WordPad) first, then copy the text in the editor and past into Excel. You should remove the "target" line from the data before pasting into Excel so that plotting graphs of the data is done properly.

Column descriptions

  • Performance:
  • 0-Rank/0-Score: 0-Score is equivalent to Pearson correlation of the entire data sequence between the reference performance and a test performance. 0-Rank is the sorting order of the 0-scores (highest score has a rank of 1).
  • 1-Rank/1-Score: 1-Score is the area fraction covered by a particular performance in the scape plot (see image above). These values should not be taken literally, since they are sensitive to the Hatto Effect.
  • 2-Rank/2-Score: 2-Score values are equivalent to 1-Score values with all higher-ranking performances removed before the calculation of the area of coverage in the scape is calculated. Improvment over the 1-Rank scores, but still somewhat sensitive to the Hatto Effect.
  • 3-Rank/3-Score: Similar to 2-Rank calculations. The bottom 1/2 of the 2-rank performances are kept constant as a noise floor for the similarity measurement. Then one-by-one the top 1/2 of the 2-rank performances are superimposed with the noise-floor performances, and a 3-score is measured as the area covered in the scape. This measure is not sentisive to the Hatto Effect.
  • 3R-Rank/3R-Score: Reverse 3-rank/3-scores. 3-rankings and scores are not symmetric (A->B values are different from B->A values). So this column represents similarity measures in the opposite direction.
  • 4-Rank/4-Score: The geometric mean between 3-scores and 3R-scores. This column gives the best overall similarity ranking between the various performances (see color codes below).
  • NED: Noise Equivalient Distance (not yet implemented)

Color codes for 3-rank listings:

  • red = strongly similar performance to target
  • orange = moderately similar performance
  • yellow = weakly similar performance
  • green = marginally similar/dissimilar performance
  • white = dissimilar to target
  • blue = false positive (has high 3-rank score but low 3R-rank score)

3-rank/scores are not symmetric, so the 3R-rank/score columns give the 3-rank/scores going in the opposite direction. More matches in the 3-rank column than in the 3R-rank column indicates an individualistic performance, while more matches in the 3R-rank column indicates a mainstream performance.

If a 3-rank and a 3R-rank are both marked as similar to each other, then there is a possible direct relation between the performances. If one is similar to the other but not in the reverse direction, then the similarity is more likely to be by chance (performers randomly chose a similar interpretation).