Osinska 1989

Performance0-Rank  0-Score1-Rank  1-Score2-Rank  2-Score3-Rank  3-Score3R-Rank  3R-Score4-Rank  4-Score  NED
Ashkenazy 1981   14  0.9146  0.0015  0.1615  0.4424  0.1614  0.27
Bacha 1997   45  0.8438  0.0045  0.0731  0.0749  0.0538  0.06
Barbosa 1983   6  0.9420  0.004  0.184  0.677  0.515  0.58
Biret 1990   47  0.8335  0.0048  0.0548  0.0538  0.0843  0.06
Block 1995   39  0.8621  0.0018  0.0822  0.238  0.4312  0.31
Brailowsky 1960   23  0.8945  0.0020  0.0916  0.3046  0.0626  0.13
Chiu 1999   21  0.8913  0.0132  0.0635  0.0630  0.0739  0.06
Clidat 1994   11  0.925  0.036  0.1511  0.5444  0.0524  0.16
Cohen 1997   16  0.9039  0.0024  0.0824  0.1948  0.0530  0.10
Cortot 1951   49  0.8248  0.0047  0.0450  0.0441  0.0751  0.05
Csalog 1996   26  0.8826  0.0034  0.0828  0.0840  0.0737  0.07
Czerny 1990   27  0.8843  0.0023  0.0923  0.2330  0.0925  0.14
Ezaki 2006   5  0.948  0.0211  0.1510  0.5517  0.2610  0.38
Ferenczy 1958   18  0.9032  0.0025  0.0925  0.1841  0.0629  0.10
Fliere 1977   2  0.962  0.192  0.432  0.773  0.642  0.70
Fou 1978   4  0.947  0.035  0.148  0.574  0.614  0.59
Francois 1956   43  0.8541  0.0044  0.0642  0.0644  0.0645  0.06
Grinberg 1951   41  0.8537  0.0043  0.0545  0.0545  0.0649  0.05
Hatto 1993   28  0.8842  0.0027  0.0639  0.0644  0.0744  0.06
Hatto 1997   32  0.8734  0.0029  0.0827  0.0843  0.0733  0.07
Indjic 2001   33  0.8723  0.0028  0.0734  0.0744  0.0735  0.07
Jonas 1947   36  0.8712  0.0133  0.0730  0.0750  0.0540  0.06
Kapell 1951   29  0.8810  0.0136  0.0733  0.0747  0.0642  0.06
Kiepura 1999   38  0.8628  0.0019  0.1021  0.2313  0.3413  0.28
Kushner 1989   42  0.8511  0.0142  0.0641  0.0632  0.1032  0.08
Luisada 1991   34  0.8736  0.0039  0.0643  0.0650  0.0546  0.05
Lushtak 2004   31  0.8729  0.0031  0.0637  0.0650  0.0448  0.05
Magaloff 1978   15  0.9031  0.0017  0.0918  0.2715  0.4011  0.33
Meguri 1997   40  0.8549  0.0040  0.0546  0.0550  0.0453  0.04
Milkina 1970   3  0.953  0.083  0.173  0.694  0.703  0.69
Mohovich 1999   24  0.894  0.0514  0.1717  0.2926  0.1517  0.21
Niedzielski 1931   50  0.8250  0.0041  0.0547  0.0539  0.0650  0.05
Ohlsson 1999   9  0.939  0.0113  0.2312  0.5415  0.309  0.40
Olejniczak 1990   13  0.9240  0.0010  0.1513  0.5128  0.1115  0.24
Osinska 1989   target  targettarget  targettarget  targettarget  targettarget  targettarget  target
Rangell 2001   30  0.8716  0.0138  0.0640  0.065  0.5622  0.18
Richter 1976   7  0.936  0.0312  0.189  0.5613  0.398  0.47
Rubinstein 1938   48  0.8247  0.0046  0.0449  0.0436  0.0652  0.05
Rubinstein 1952   37  0.8619  0.0037  0.0729  0.078  0.5021  0.19
Rubinstein 1961   46  0.8322  0.0050  0.0732  0.078  0.5618  0.20
Rubinstein 1966   44  0.8418  0.0049  0.0544  0.0510  0.5523  0.17
Shebanova 2002   1  0.971  0.451  0.441  0.802  0.711  0.75
Smidowicz 1948   17  0.9017  0.0121  0.0919  0.2443  0.0728  0.13
Smidowicz 1948b   19  0.9025  0.0022  0.0820  0.2343  0.0727  0.13
Smith 1975   25  0.8830  0.0035  0.0638  0.064  0.6119  0.19
Sofronitsky 1949   35  0.8744  0.0030  0.0636  0.0635  0.0834  0.07
Sztompka 1959   8  0.9327  0.007  0.207  0.5810  0.456  0.51
Tomsic 1995   20  0.9024  0.0016  0.2014  0.4940  0.0720  0.19
Uninsky 1971   22  0.8933  0.0026  0.0626  0.1131  0.0831  0.09
Wasowski 1980   12  0.9214  0.018  0.215  0.6517  0.397  0.50
Average Tempo   10  0.9315  0.019  0.196  0.6432  0.0816  0.23
Random 1   52  -0.0452  0.0051  0.0352  0.0322  0.1241  0.06
Random 2   53  -0.0953  0.0053  0.0253  0.0224  0.1247  0.05
Random 3   51  0.0151  0.0052  0.0351  0.0324  0.1536  0.07

Note: To load data table give above into Excel, copy and paste the data into a text editor (such as WordPad) first, then copy the text in the editor and past into Excel. You should remove the "target" line from the data before pasting into Excel so that plotting graphs of the data is done properly.

Column descriptions

  • Performance:
  • 0-Rank/0-Score: 0-Score is equivalent to Pearson correlation of the entire data sequence between the reference performance and a test performance. 0-Rank is the sorting order of the 0-scores (highest score has a rank of 1).
  • 1-Rank/1-Score: 1-Score is the area fraction covered by a particular performance in the scape plot (see image above). These values should not be taken literally, since they are sensitive to the Hatto Effect.
  • 2-Rank/2-Score: 2-Score values are equivalent to 1-Score values with all higher-ranking performances removed before the calculation of the area of coverage in the scape is calculated. Improvment over the 1-Rank scores, but still somewhat sensitive to the Hatto Effect.
  • 3-Rank/3-Score: Similar to 2-Rank calculations. The bottom 1/2 of the 2-rank performances are kept constant as a noise floor for the similarity measurement. Then one-by-one the top 1/2 of the 2-rank performances are superimposed with the noise-floor performances, and a 3-score is measured as the area covered in the scape. This measure is not sentisive to the Hatto Effect.
  • 3R-Rank/3R-Score: Reverse 3-rank/3-scores. 3-rankings and scores are not symmetric (A->B values are different from B->A values). So this column represents similarity measures in the opposite direction.
  • 4-Rank/4-Score: The geometric mean between 3-scores and 3R-scores. This column gives the best overall similarity ranking between the various performances (see color codes below).
  • NED: Noise Equivalient Distance (not yet implemented)

Color codes for 3-rank listings:

  • red = strongly similar performance to target
  • orange = moderately similar performance
  • yellow = weakly similar performance
  • green = marginally similar/dissimilar performance
  • white = dissimilar to target
  • blue = false positive (has high 3-rank score but low 3R-rank score)

3-rank/scores are not symmetric, so the 3R-rank/score columns give the 3-rank/scores going in the opposite direction. More matches in the 3-rank column than in the 3R-rank column indicates an individualistic performance, while more matches in the 3R-rank column indicates a mainstream performance.

If a 3-rank and a 3R-rank are both marked as similar to each other, then there is a possible direct relation between the performances. If one is similar to the other but not in the reverse direction, then the similarity is more likely to be by chance (performers randomly chose a similar interpretation).